keras实现theano和tensorflow训练的模型相互转换

我就废话不多说了,大家还是直接看代码吧~

</pre><pre code_snippet_id="1947416" snippet_file_name="blog_20161025_1_3331239" name="code" class="python">

# coding:utf-8
"""
If you want to load pre-trained weights that include convolutions (layers Convolution2D or Convolution1D),
be mindful of this: Theano and TensorFlow implement convolution in different ways (TensorFlow actually implements correlation, much like Caffe),
and thus, convolution kernels trained with Theano (resp. TensorFlow) need to be converted before being with TensorFlow (resp. Theano).
"""
from keras import backend as K
from keras.utils.np_utils import convert_kernel
from text_classifier import keras_text_classifier
import sys
 
def th2tf( model):
  import tensorflow as tf
  ops = []
  for layer in model.layers:
    if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']:
      original_w = K.get_value(layer.W)
      converted_w = convert_kernel(original_w)
      ops.append(tf.assign(layer.W, converted_w).op)
  K.get_session().run(ops)
  return model
 
def tf2th(model):
  for layer in model.layers:
    if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']:
      original_w = K.get_value(layer.W)
      converted_w = convert_kernel(original_w)
      K.set_value(layer.W, converted_w)
  return model
 
def conv_layer_converted(tf_weights, th_weights, m = 0):
  """
  :param tf_weights:
  :param th_weights:
  :param m: 0-tf2th, 1-th2tf
  :return:
  """
  if m == 0: # tf2th
    tc = keras_text_classifier(weights_path=tf_weights)
    model = tc.loadmodel()
    model = tf2th(model)
    model.save_weights(th_weights)
  elif m == 1: # th2tf
    tc = keras_text_classifier(weights_path=th_weights)
    model = tc.loadmodel()
    model = th2tf(model)
    model.save_weights(tf_weights)
  else:
    print("0-tf2th, 1-th2tf")
    return
if __name__ == '__main__':
  if len(sys.argv) < 4:
    print("python tf_weights th_weights <0|1>\n0-tensorflow to theano\n1-theano to tensorflow")
    sys.exit(0)
  tf_weights = sys.argv[1]
  th_weights = sys.argv[2]
  m = int(sys.argv[3])
  conv_layer_converted(tf_weights, th_weights, m)

补充知识:keras学习之修改底层为TensorFlow还是theano

我们知道,keras的底层是TensorFlow或者theano

要知道我们是用的哪个为底层,只需要import keras即可显示

修改方法:

打开

修改

以上这篇keras实现theano和tensorflow训练的模型相互转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。