使用keras时,加入keras的lambda层以实现自己定义的操作。但是,发现操作结果的shape信息有问题。
我的后端是theano,使用了sum操作。
比如输入时,shape为(32,28,28),其中32为batch大小。
此时对应的ndim应该等于3。
但是,lambda处理后结果显示_keras_shape为(32,28,28),而ndim却是2。
这导致后边各项操作都会出现问题。
此处sum函数加入参数keepdims=True即可。
此注意keras中的各种层几乎都不用去理会batch的大小,系统会自动在shape中加入None占位,所以很多参数也不用加入batch的大小。但是进行sum等操作时,选择按照哪个axis进行操作,要考虑batch的存在。
补充知识:keras Merge or merge
在使用keras merge层时,发现有Merge 、merge两种:
from keras.layers import Merge
from keras.layers import merge
使用第一种是报错
“TensorVariable object has no attribute 'get_output_shape_at' ”
使用第二种小写即可。
以上这篇解决keras加入lambda层时shape的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。