解决keras加入lambda层时shape的问题

使用keras时,加入keras的lambda层以实现自己定义的操作。但是,发现操作结果的shape信息有问题。

我的后端是theano,使用了sum操作。

比如输入时,shape为(32,28,28),其中32为batch大小。

此时对应的ndim应该等于3。

但是,lambda处理后结果显示_keras_shape为(32,28,28),而ndim却是2。

这导致后边各项操作都会出现问题。

此处sum函数加入参数keepdims=True即可。

此注意keras中的各种层几乎都不用去理会batch的大小,系统会自动在shape中加入None占位,所以很多参数也不用加入batch的大小。但是进行sum等操作时,选择按照哪个axis进行操作,要考虑batch的存在。

补充知识:keras Merge or merge

在使用keras merge层时,发现有Merge 、merge两种:

from keras.layers import Merge

from keras.layers import merge

使用第一种是报错

“TensorVariable object has no attribute 'get_output_shape_at' ”

使用第二种小写即可。

以上这篇解决keras加入lambda层时shape的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。