Pytorch释放显存占用方式

如果在python内调用pytorch有可能显存和GPU占用不会被自动释放,此时需要加入如下代码

torch.cuda.empty_cache()

我们来看一下官方文档的说明

Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible in nvidia-smi.

Note

empty_cache() doesn't increase the amount of GPU memory available for PyTorch. See Memory management for more details about GPU memory management.

此外还可以使用

memory_allocated()和max_memory_allocated()

观察显存占用,并使用

memory_cached()和 max_memory_cached()

观察由缓存分配器管理的内存。

以上这篇Pytorch释放显存占用方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。