这篇文章主要介绍了java操作elasticsearch的案例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
到目前为止,我们一直都是使用RESTful风格的 API操作elasticsearch服务,但是通过我们之前的学习知道,elasticsearch提供了很多语言的客户端用于操作elasticsearch服务,例如:java、python、.net、JavaScript、PHP等。而我们此次就学习如何使用java语言来操作elasticsearch服务。在elasticsearch的官网上提供了两种java语言的API,一种是Java Transport Client,一种是Java REST Client。
而Java REST Client又分为Java Low Level REST Client和Java High Level REST Client,Java High Level REST Client是在Java Low Level REST Client的基础上做了封装,使其以更加面向对象和操作更加便利的方式调用elasticsearch服务。
官方推荐使用Java High Level REST Client,因为在实际使用中,Java Transport Client在大并发的情况下会出现连接不稳定的情况。
那接下来我们就来看看elasticsearch提供的Java High Level REST Client(以下简称高级REST客户端)的一些基础的操作,跟多的操作大家自行阅读elasticsearch的官方文档:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html在官网上已经对高级REST客户端的各种API做了很详细的使用说明,我们这篇文章主要还是翻译官网上的内容,先让大家以更友好的中文文档方式入门,等大家熟悉了这些API之后在查阅官网。
1.基本过滤查询
long start = System.currentTimeMillis(); long end = start - 4 * 60 * 60 * 1000; RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("timestamp").from(end,true).to(start,true); QueryBuilder s=QueryBuilders.boolQuery().must(rangeQueryBuilder); QueryBuilder qb=new MatchAllQueryBuilder(); SearchResponse response= elasticsearchTemplate.getClient().prepareSearch("monitoring-cpu").setTypes("cloud-cpu").setQuery(s).setFrom(0) .setSize(100).get(); SearchHits searchHits = response.getHits(); for(SearchHit hit:searchHits.getHits()){ System.out.println(hit.getSourceAsString()); }
2.条件过滤,进然后行分组,对组内数据求平均,然后排行查询
//ES中查询所有主机的监控数据 BoolQueryBuilder uuidsBoolQuery = QueryBuilders.boolQuery(); uuidsBoolQuery.must(QueryBuilders.matchQuery("uuid", uuidStr)); //暂定向前推一天,计算平均 long end = System.currentTimeMillis(); long start = end - 24 * 60 * 60 * 1000; RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("timestamp").from(start,true).to(end,true); QueryBuilder timeFilter = QueryBuilders.boolQuery().must(rangeQueryBuilder); //开始cputop查询 //分组字段是id,排序由多个字段排序组成 TermsAggregationBuilder orderCpu = AggregationBuilders.terms("group-uuid").field("uuid.keyword").order(Terms.Order.compound( Terms.Order.aggregation("avg-cpuuse", true) )); //求和字段1 AvgAggregationBuilder avgCpu = AggregationBuilders.avg("avg-cpuuse").field("usage_idle"); orderCpu.subAggregation(avgCpu);//添加到分组聚合请求中 orderCpu.size(10);//top10限制 FilterAggregationBuilder cpuAggregationBuilder = AggregationBuilders.filter("uuidFilter", uuidsBoolQuery) .subAggregation(AggregationBuilders.filter("timeFilter",timeFilter).subAggregation(orderCpu)); SearchResponse response = elasticsearchTemplate.getClient().prepareSearch("monitoring-cpu").setTypes("cloud-cpu") .addAggregation(cpuAggregationBuilder) .get(); InternalFilter uuidFilterRe = response.getAggregations().get("uuidFilter"); InternalFilter timeFilterRe = uuidFilterRe.getAggregations().get("timeFilter"); Terms tms = timeFilterRe.getAggregations().get("group-uuid"); //遍历每一个分组的key for(Terms.Bucket tbb:tms.getBuckets()){ //获取count的和 InternalAvg avg = tbb.getAggregations().get("avg-cpuuse"); for (Map userResource : userResources) { Object uuid = userResource.get("uuid"); if (uuid != null && !"".equals(uuid.toString())){ if (uuid.equals(tbb.getKey())){ userResource.put("cupPercent",numberFormat.format(100.0 - avg.getValue())); cpuSort.add(userResource); } } } }
3.过滤聚合求平均查询
//ES中查询所有主机的监控数据 BoolQueryBuilder uuidsBoolQuery = QueryBuilders.boolQuery(); uuidsBoolQuery.must(QueryBuilders.matchQuery("uuid", "1,2,4")); //暂定向前推一天,计算平均 long end = System.currentTimeMillis(); long start = end - 24 * 60 * 60 * 1000; RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("timestamp").from(start,true).to(end,true); QueryBuilder timeFilter = QueryBuilders.boolQuery().must(rangeQueryBuilder); //开始查询Cpu平均使用率 FilterAggregationBuilder cpuAggregationBuilder = AggregationBuilders.filter("uuidFilter", uuidsBoolQuery) .subAggregation(AggregationBuilders.filter("timeFilter",timeFilter) .subAggregation(AggregationBuilders.avg("avgCpu").field("usage_idle"))); SearchResponse response = elasticsearchTemplate.getClient().prepareSearch("monitoring-cpu").setTypes("cloud-cpu") .addAggregation(cpuAggregationBuilder) .get(); InternalFilter uuidFilterRe = response.getAggregations().get("uuidFilter"); InternalFilter timeFilterRe = uuidFilterRe.getAggregations().get("timeFilter"); InternalAvg avgCpuRe = timeFilterRe.getAggregations().get("avgCpu"); String cpupercent = "0.00"; if (!"NaN".equals(avgCpuRe.getValue() + "")){ cpupercent = numberFormat.format(100.0 - avgCpuRe.getValue()); }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。