这是一个C ++程序,用于实现Edmonds-Karp算法以计算源顶点与宿顶点之间的最大流量。
Begin function edmondsKarp() : initiate flow as 0. If there is an augmenting path from source to sink, add the path to flow. Return flow. End
#include<cstdio> #include<queue> #include<cstring> #include<vector> #include<iostream> using namespace std; int c[10][10]; int flowPassed[10][10]; vector<int> g[10]; int parList[10]; int currentPathC[10]; int bfs(int sNode, int eNode)//breadth first search { memset(parList, -1, sizeof(parList)); memset(currentPathC, 0, sizeof(currentPathC)); queue<int> q;//declare queue vector q.push(sNode); parList[sNode] = -1;//initialize parlist’s source node currentPathC[sNode] = 999;//initialize currentpath’s source node while(!q.empty())// if q is not empty { int currNode = q.front(); q.pop(); for(int i=0; i<g[currNode].size(); i++) { int to = g[currNode][i]; if(parList[to] == -1) { if(c[currNode][to] - flowPassed[currNode][to] > 0) { parList[to] = currNode; currentPathC[to] = min(currentPathC[currNode], c[currNode][to] - flowPassed[currNode][to]); if(to == eNode) { return currentPathC[eNode]; } q.push(to); } } } } return 0; } int edmondsKarp(int sNode, int eNode) { int maxFlow = 0; while(true) { int flow = bfs(sNode, eNode); if (flow == 0) { break; } maxFlow += flow; int currNode = eNode; while(currNode != sNode) { int prevNode = parList[currNode]; flowPassed[prevNode][currNode] += flow; flowPassed[currNode][prevNode] -= flow; currNode = prevNode; } } return maxFlow; } int main(){ int nodCount, edCount; cout<<"enter the number of nodes and edges\n"; cin>>nodCount>>edCount; int source, sink; cout<<"enter the source and sink\n"; cin>>source>>sink; for(int ed = 0; ed < edCount; ed++) { cout<<"enter the start and end vertex along with capacity\n"; int from, to, cap; cin>>from>>to>>cap; c[from][to] = cap; g[from].push_back(to); g[to].push_back(from); } int maxFlow = edmondsKarp(source, sink); cout<<endl<<endl<<"最大流量为:"<<maxFlow<<endl; }
输出结果
enter the number of nodes and edges 6 7 enter the source and sink 0 4 enter the start and end vertex along with capacity 0 1 14 enter the start and end vertex along with capacity 2 4 10 enter the start and end vertex along with capacity 6 7 9 enter the start and end vertex along with capacity 5 2 10 enter the start and end vertex along with capacity 1 4 12 enter the start and end vertex along with capacity 2 0 15 enter the start and end vertex along with capacity 5 3 15 最大流量为:12