在这个问题中,给我们一个数字N,我们必须找到所有唯一的质因数及其除以该数的幂。
让我们以一个例子来理解这个话题-
Input: 55 Output: 5 power 1 11 power 1
说明-
55被5和11整除。
为了解决此问题,一种简单的解决方法是找到N的素数。然后找到将数字N除的质数的幂并打印出来。
高效方法
Step 1: Find an array s[N+1]. s[i] = prime factor of i dividing N. Step 2: Find all powers of i. prime = s[N] and pow = 1. Step 3: While (N > 1) : Step 3.1: N /= s[N]; Step 3.2: if(prime = s[N]) : pow++ Step 4: print prime and pow.
#include<bits/stdc++.h> using namespace std; void primes(int N, int s[]){ vector <bool> prime(N+1, false); for (int i=2; i<=N; i+=2) s[i] = 2; for (int i=3; i<=N; i+=2){ if (prime[i] == false){ s[i] = i; for (int j=i; j*i<=N; j+=2){ if (prime[i*j] == false){ prime[i*j] = true; s[i*j] = i; } } } } } void generatePrimeFactors(int N) { int s[N+1]; primes(N, s); cout<<"Factor\tPower"<<endl; int prime = s[N]; int power = 1; while (N > 1){ N /= s[N]; if (prime == s[N]){ power++; continue; } cout<<prime<<"\t"<<power<<endl; prime = s[N]; power = 1; } } int main() { int N = 55; cout<<"The prime factors are and their powers are :\n"; generatePrimeFactors(N); return 0; }
输出结果
主要因素是,它们的力量是-
Factor Power 5 1 11 1