假设存在三个变量N,R和P。N和R用于获得N C R,并且P是素数。我们必须找到N C R是否可被P整除。假设我们有一些数字N = 7,R = 2和P = 3,那么7 C 2 = 21,这可被3整除,因此输出为真。
我们知道N C R = N!/(R!*(N – R)!)。我们将使用Legendre公式获得P的最大幂,该幂除以N !, R!。和(N – R)!为了使NCR被P整除,条件是N!> R!+(N-R)!
#include <iostream> using namespace std; int getPower(int n, int p) { int pow = 0; while (n) { n /= p; pow += n; } return pow; } bool isDivisibleByP(int n, int r, int p) { // Find the highest powers of p // that divide n!, r! and (n - r)! int x1 = getPower(n, p); int x2 = getPower(r, p); int x3 = getPower(n - r, p); if (x1 > x2 + x3) return true; return false; } int main() { int n = 7, r = 2, p = 7; if (isDivisibleByP(n, r, p)) cout << "nCr is divisible by P"; else cout << "nCr is not divisible by P"; }
输出结果
nCr is divisible by P