MongoDB 聚合

聚合操作处理数据记录并返回计算结果。聚合操作将来自多个文档的值分组在一起,并且可以对分组的数据执行各种操作以返回单个结果。在SQL中,count(*)和 group by 等效于MongoDB聚合。

Aggregate()方法

对于MongoDB中的聚合,您应该使用 aggregate() 方法。

语法

aggregate()方法的基本语法如下-

>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

在线示例

在集合中,您具有以下数据-

{
   _id: ObjectId(7df78ad8902c)
   title: 'MongoDB Overview', 
   description: 'MongoDB不是SQL数据库',
   by_user: 'nhooo.com',
   url: 'https://www.nhooo.com',
   tags: ['mongodb', 'database', 'NoSQL'],
   likes: 100
},
{
   _id: ObjectId(7df78ad8902d)
   title: 'NoSQL Overview', 
   description: 'No SQL数据库是非常快的',
   by_user: 'nhooo.com',
   url: 'https://www.nhooo.com',
   tags: ['mongodb', 'database', 'NoSQL'],
   likes: 10
},
{
   _id: ObjectId(7df78ad8902e)
   title: 'Neo4j Overview', 
   description: 'Neo4j 是No SQL数据库',
   by_user: 'Neo4j',
   url: 'http://www.neo4j.com',
   tags: ['neo4j', 'database', 'NoSQL'],
   likes: 750
},

现在,从上述集合中,如果要显示一个列表,说明每个用户编写了多少教程,那么您将使用以下aggregate()方法-

> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])
{ "_id" : "Nhooo.com", "num_tutorial" : 2 }
{ "_id" : "Neo4j", "num_tutorial" : 1 }
>

以上用例的sql等效查询将为 select by_user, count(*) from mycol group by by_user

在上面的示例中,我们已经按字段by_user对文档进行了分组,并且在每次按用户分组时,先前的sum值都会增加。以下是可用的聚合表达式的列表。

表达式描述实例
$sum计算总和。db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])
$avg计算平均值db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$avg : "$likes"}}}])
$min获取集合中所有文档对应值得最小值。db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$min : "$likes"}}}])
$max获取集合中所有文档对应值得最大值。db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$max : "$likes"}}}])
$push在结果文档中插入值到一个数组中。db.mycol.aggregate([{$group : {_id : "$by_user", url : {$push: "$url"}}}])
$addToSet在结果文档中插入值到一个数组中,但不创建副本。db.mycol.aggregate([{$group : {_id : "$by_user", url : {$addToSet : "$url"}}}])
$first根据资源文档的排序获取第一个文档数据。db.mycol.aggregate([{$group : {_id : "$by_user", first_url : {$first : "$url"}}}])
$last根据资源文档的排序获取最后一个文档数据db.mycol.aggregate([{$group : {_id : "$by_user", last_url : {$last : "$url"}}}])

管道的概念

管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。

表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。

这里我们介绍一下聚合框架中常用的几个操作:

  • $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。

  • $match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。

  • $limit:用来限制MongoDB聚合管道返回的文档数。

  • $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。

  • $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。

  • $group:将集合中的文档分组,可用于统计结果。

  • $sort:将输入文档排序后输出。

  • $geoNear:输出接近某一地理位置的有序文档。

管道操作符实例

1、$project 实例

db.article.aggregate(
    { $project : {
        title : 1 ,
        author : 1 ,
    }}
 );

这样的话结果中就只还有_id,tilte和author三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:

db.article.aggregate(
    { $project : {
        _id : 0 ,
        title : 1 ,
        author : 1
    }});

2.$match 实例

db.articles.aggregate( [
                        { $match : { score : { $gt : 70, $lte : 90 } } },
                        { $group: { _id: null, count: { $sum: 1 } } }
                       ] );

$match用于获取分数大于70小于或等于90记录,然后将符合条件的记录送到下一阶段$group管道操作符进行处理。

3.$skip 实例

db.article.aggregate(
    { $skip : 5 });

经过$skip管道操作符处理后,前五个文档被"过滤"掉。