python pandas 组内排序、单组排序、标号的实例

摘要:本文主要是讲解一下,如何进行排序。分为两种情况,不分组进行排序和组内进行排序。什么意思呢?具体来说,我举个栗子。

****注意****

如果只是单纯想对某一列进行排序,而不进行打序号的话直接使用.sort_values就可以了。下文是关于如何把序号也打上的

————————————————————————————

我们有一个数据集如下:

我们下面想进行两种排序。先说第一种比较简单的也是很常用的,简单的对某一列进行排序然后添加一列序号。

例如,我们队comment_num这一列进行从大到小的排序,然后给出序号。如下图:

可以看到,sort_num这一列就是我们队comment_num的排序。

如何实现呢?很简单,代码如下(数据集为data):

data['sort_num']=data['comment_num'].rank(ascending=0,method='dense')

这里,我们用到了两个参数,第一个很好理解 ascending,就是选择是升序还是降序排列。

另外一个参数method,这个参数很重要。我下面详细讲一下。

有时候,我们排序的时候会遇到相同大小,这个时候怎么处理呢?method其实就是让我们选择如何处理。

有以下几种处理方案:

第一种情况,如果出现相等,则序号一样,之后序号照常递增。这种情况就是上图的,我们看到comment_num等于4的有2个,序号为1。comment_num等于3的时候,序号为2,这个叫做正常按1依次递增。这和时候method='dense'

第二种情况,如果出现相等,则取最先出现的值序号为“最小”,其他相同值依次按1递增,如果把上面代码method='first',就是实现这种效果,效果如下图:

data['sort_num']=data['comment_num'].rank(ascending=0,method='first')

comment_num中,4最大,并且第1行中的4最先出现,故序号为1。

第三种情况和第四种情况比较复杂。文字不好说明,下面直接放代码和效果。

当method='min'时

data['sort_num']=data['comment_num'].rank(ascending=0,method='min')

当method='max'时

data['sort_num']=data['comment_num'].rank(ascending=0,method='max')

--------------------------------分割线--------------------------------------

上面只是某一列的排序,下面是组内排序。什么是意思?同样看下面的例子

假如,我想对cate为7的comment_num进行排序,同样也对,cate为8的comment_num进行排序。也就是说,对comment_num排序的时候,只考虑相同的cate,这个就是对组内进行排序。

实现的效果应该如下图:

实现代码也很简单。

data['group_sort']=data['comment_num'].groupby(data['cate']).rank(ascending=0,method='dense')

以上这篇python pandas 组内排序、单组排序、标号的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。